unity-shader-example-sequenceEffect

buildin效果图

urp效果图

SequenceEffect.shader

SequenceEffect.shader
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Shader "HHF/Example/SequenceEffect"
{
Properties
{
[Enum(UnityEngine.Rendering.BlendMode)]_SrcFactor("SrcFactor",int) = 1
[Enum(UnityEngine.Rendering.BlendMode)]_DstFactor("DstFactor",int) = 1
_BaseColor("Base Color",color) = (1,1,1,1)
[NoScaleOffset]_BaseMap("BaseMap", 2D) = "white" {}
_Sequence("Row(X) Column(Y) Speed(Z)", vector) = (3,3,3,0)
[Enum(Billboard,1,VerticalBillboard,0)]_BillboardType("BillboardType",int) = 1
}

SubShader
{
Tags
{
"Queue" = "Transparent"
"RenderType" = "Transparent"
"IgnoreProjector" = "True"
"RenderPipeline" = "UniversalPipeline"
}

Blend [_SrcFactor] [_DstFactor]

Pass
{
HLSLPROGRAM
#pragma prefer_hlslcc gles
#pragma exclude_renderers d3d11_9x
#pragma vertex vert
#pragma fragment frag
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/ShaderGraphFunctions.hlsl"

struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};

struct v2f
{
float4 positionCS : SV_POSITION;
float2 uv : TEXCOORD0;
};

CBUFFER_START(UnityPerMaterial)
half4 _BaseColor;
half4 _Sequence;
half _BillboardType;
CBUFFER_END
TEXTURE2D (_BaseMap); SAMPLER(sampler_BaseMap); float4 _BaseMap_ST;

v2f vert(appdata v)
{
v2f o = (v2f)0;

// 构建旋转后的基向量在模型本地空间下的矩阵
// viewDir相当于是我们自己定义的Z基向量,把相机从世界空间转换到本地空间,而本地空间就是以我们模型的原点为中心点的坐标,此时相机转换后的位置就是我们要的向量了
float3 viewDir = mul(GetWorldToObjectMatrix(), float4(_WorldSpaceCameraPos, 1)).xyz;
// 对向量归一化,求出基
viewDir = normalize(viewDir);
viewDir.y *= _BillboardType;
// 假设向上的向量为世界坐标系下的上向量
float3 upDir = float3(0, 1, 0);
// 利用叉积(左手法则)计算出向右的向量
float3 rightDir = normalize(cross(viewDir, upDir));
// 再利用叉积计算出精确的向上的向量
upDir = cross(rightDir, viewDir);

// 方法1:矩阵的写法
float4x4 M = float4x4(
rightDir.x, upDir.x, viewDir.x,0,
rightDir.y, upDir.y, viewDir.y,0,
rightDir.z, upDir.z, viewDir.z,0,
0,0,0,1
);
float3 newVertex = mul(M, v.vertex).xyz;

// 方法2:向量乘法的写法
// float3 newVertex = rightDir * v.vertex.x + upDir * v.vertex.y + viewDir * v.vertex.z;

o.positionCS = TransformObjectToHClip(newVertex);

// UV的起始位置(左上角的格子)
o.uv = float2(v.uv.x/_Sequence.y,v.uv.y/_Sequence.x+1/_Sequence.x*(_Sequence.x-1));
// 对U方向进行走格偏移
o.uv.x += frac(floor(_Time.y * _Sequence.z)/_Sequence.y);
// 对V方向进行走格偏移
o.uv.y -= frac(floor(_Time.y * _Sequence.z/_Sequence.y)/_Sequence.x);

return o;
}

half4 frag(v2f i) : SV_Target
{
half4 c;
half4 baseMap = SAMPLE_TEXTURE2D(_BaseMap, sampler_BaseMap, i.uv);
c = baseMap * _BaseColor;
c.rgb *= c.a;
return c;
}
ENDHLSL
}
}

SubShader
{
Tags
{
"Queue" = "Transparent"
"RenderType" = "Transparent"
"IgnoreProjector" = "True"
}

Blend [_SrcFactor] [_DstFactor]

Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};

struct v2f
{
float2 uv : TEXCOORD0;
float4 positionCS : SV_POSITION;
};

sampler2D _BaseMap;
half4 _BaseColor;
half4 _Sequence;
fixed _BillboardType;

v2f vert (appdata v)
{
v2f o = (v2f)0;

// 构建旋转后的基向量在模型本地空间下的矩阵
// viewDir相当于是我们自己定义的Z基向量,把相机从世界空间转换到本地空间,而本地空间就是以我们模型的原点为中心点的坐标,此时相机转换后的位置就是我们要的向量了
float3 viewDir = mul(unity_WorldToObject,float4(_WorldSpaceCameraPos,1));
// 对向量归一化,求出基
viewDir = normalize(viewDir);
viewDir.y *= _BillboardType;
// 假设向上的向量为世界坐标系下的上向量
float3 upDir = float3(0,1,0);
// 利用叉积(左手法则)计算出向右的向量
float3 rightDir = normalize(cross(viewDir,upDir));
// 再利用叉积计算出精确的向上的向量
upDir = cross(rightDir,viewDir);

// 方法1:矩阵的写法
float4x4 M = float4x4(
rightDir.x,upDir.x,viewDir.x,0,
rightDir.y,upDir.y,viewDir.y,0,
rightDir.z,upDir.z,viewDir.z,0,
0,0,0,1
);
float3 newVertex = mul(M, v.vertex).xyz;

// 方法2:向量乘法的写法
// float3 newVertex = rightDir * v.vertex.x + upDir * v.vertex.y + viewDir * v.vertex.z;

o.positionCS = UnityObjectToClipPos(newVertex);

// UV的起始位置(左上角的格子)
o.uv = float2(v.uv.x/_Sequence.y,v.uv.y/_Sequence.x+1/_Sequence.x*(_Sequence.x-1));
// 对U方向进行走格偏移
o.uv.x += frac(floor(_Time.y * _Sequence.z)/_Sequence.y);
// 对V方向进行走格偏移
o.uv.y -= frac(floor(_Time.y * _Sequence.z/_Sequence.y)/_Sequence.x);

return o;
}

fixed4 frag (v2f i) : SV_Target
{
half4 c;
half4 baseMap = tex2D(_BaseMap, i.uv);
c = baseMap * _BaseColor;
c.rgb *= c.a;
return c;
}
ENDCG
}
}
}