help
数学公式
$\frac{7x+5}{1+y^2}$
$\frac{7x+5}{1+y^2}$
$2^{32}-1$
$2^{32}-1$
$z=z_l$
$z=z_l$
$\cdots$
$\cdots$
$\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}$
$\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}$
$\sqrt{2};\sqrt[n]{3}$
$\sqrt{2};\sqrt[n]{3}$
$\vec{a} \cdot \vec{b}=0$
$\vec{a} \cdot \vec{b}=0$
$\int ^2_3 x^2 {\rm d}x$
$\int ^2_3 x^2 {\rm d}x$
$\iint$
$\iint$
$\iiint$
$\iiint$
$\oint$
$\oint$
$\oint$
$\oint$
$\mathrm{d}$
$\mathrm{d}$
$\prime$
$\prime$
$\lim$
$\lim$
$\infty$
$\infty$
$\partial$
$\partial$
$\left.\frac{\partial f(x,y)}{\partial x}\right$
$\left.\frac{\partial f(x,y)}{\partial x}\right$
$\sum$
$\sum$
$\lim_{n\rightarrow+\infty} n$
$\lim_{n\rightarrow+\infty} n$
$\sum \frac{1}{i^2}$
$\sum \frac{1}{i^2}$
$\prod \frac{1}{i^2}$
$\prod \frac{1}{i^2}$
$$e^{i\theta}=cos\theta+\sin\theta i\tag{1}$$
$$e^{i\theta}=cos\theta+\sin\theta i\tag{1}$$
1 | $$ |
$$
\begin{matrix}
1 & 2 & 3
4 & 5 & 6
7 & 8 & 9
\end{matrix}
$$
1 | $$ |
$$
\left[
\begin{matrix}
1 & 2 & 3 \
4 & 5 & 6 \
7 & 8 & 9
\end{matrix} \right]\tag{2}
$$
1 | $$\begin{cases} |
$$\begin{cases}
a_1x+b_1y+c_1z=d_1\
a_2x+b_2y+c_2z=d_2\
a_3x+b_3y+c_3z=d_3\
\end{cases}
$$
katax
$$E=mc^2$$
Inline 行内的公式 $$E=mc^2$$ 行内的公式,行内的$$E=mc^2$$公式。
$$c = \pm\sqrt{a^2 + b^2}$$
$$x > y$$
$$f(x) = x^2$$
$$\alpha = \sqrt{1-e^2}$$
$$(\sqrt{3x-1}+(1+x)^2)$$
$$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$$
$$\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$f(x) = \int_{-\infty}^\infty\hat f(\xi),e^{2 \pi i \xi x},d\xi$$
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
$$a^2$$
$$a^{2+2}$$
$$a_2$$
$${x_2}^3$$
$$x_2^3$$
$$10^{10^{8}}$$
$$a_{i,j}$$
$$_nP_k$$
$$c = \pm\sqrt{a^2 + b^2}$$
$$\frac{1}{2}=0.5$$
$$\dfrac{k}{k-1} = 0.5$$
$$\dbinom{n}{k} \binom{n}{k}$$
$$\oint_C x^3, dx + 4y^2, dy$$
$$\bigcap_1^n p \bigcup_1^k p$$
$$e^{i \pi} + 1 = 0$$
$$\left ( \frac{1}{2} \right )$$
$$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$
$${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$$
$$\textstyle \sum_{k=1}^N k^2$$
$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$$
$$\binom{n}{k}$$
$$0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots$$
$$\sum_{k=1}^N k^2$$
$$\textstyle \sum_{k=1}^N k^2$$
$$\prod_{i=1}^N x_i$$
$$\textstyle \prod_{i=1}^N x_i$$
$$\coprod_{i=1}^N x_i$$
$$\textstyle \coprod_{i=1}^N x_i$$
$$\int_{1}^{3}\frac{e^3/x}{x^2}, dx$$
$$\int_C x^3, dx + 4y^2, dy$$
$${}_1^2!\Omega_3^4$$
多行公式 Multi line
```math or ```latex or ```katex
1 | f(x) = \int_{-\infty}^\infty |
1 | \displaystyle |
1 | \dfrac{ |
1 | \displaystyle |
1 | f(x) = \int_{-\infty}^\infty |
https://blog.csdn.net/jyfu2_12/article/details/79207643
https://pandao.github.io/editor.md/examples/katex.html
https://blog.csdn.net/lvsehaiyang1993/article/details/82832290
特殊符号代替
|
语法
1 | {% label primary@theme config file %} |
1 | # Allow to cache content generation. Introduced in NexT v6.0.0. |
1 | {% tabs github-banner %} |
permalink
→ is the specified link must have full url path.
title
→ is the title and aria-label name.
1 | {% note danger %} |
Only works on webkit based browsers.
Only works on webkit based browsers.
Only works on webkit based browsers.
Only works on webkit based browsers.
Only works on webkit based browsers.
Only works on webkit based browsers.
content